Modeling the Volatility of the S&P BVL Mining Index Using Support Vector Machines and a Linear GARCH Model
DOI:
https://doi.org/10.36881/ri.v8i1.882Keywords:
Volatility, Forecasting, GARCHAbstract
This work addresses the critical challenge of predicting volatility in the financial market, specifically focused on the S&P BVL Mining Index of the Peruvian mining sector. The difficulty lies in the complex and dynamic nature of volatility, which presents significant challenges for investors and risk managers in making informed and strategic decisions. The study proposes to evaluate the effectiveness of a hybrid model combining Support Vector Regression with Generalized Autoregressive Conditional Heteroskedasticity (SVR-GARCH) that incorporates a linear kernel, against conventional GARCH approaches. Methodologically, the study employs a quantitative design, gathering and processing daily historical data through the Yahoo! Finance API using Python programming tools, covering a period from January 31, 2014, to February 12, 2024. The Augmented Dickey-Fuller (ADF) unit root test is implemented to determine the stationarity of the time series. The findings indicate that the proposed SVR-GARCH-Linear model not only provides more accurate predictions compared to standard models but also proves to be robust against market fluctuations and the specific sensitivities of the mining index. We conclude that the hybrid approach represents a significant improvement in prediction and risk management tools, with practical applications that could extend to other indices and financial markets, demonstrating the need to incorporate machine learning techniques in contemporary financial modeling.
Downloads
References
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6
Bezerra, P. C. S., & Albuquerque, P. H. M. (2019). Volatility forecasting: The support vector regression can beat the random walk. Economic Computation and Economic Cybernetics Studies and Research, 53(4), 115–126. https://doi.org/10.24818/18423264/53.4.19.07
Chen, S., Härdle, W. K., & Jeong, K. (2010). Forecasting volatility with support vector machine-based GARCH model. Journal of Forecasting, 29(4), 406–433. https://doi.org/10.1002/for.1134
Chung, V., & Espinoza, J. (2023). Latin american market asset volatility analysis: a comparison of garch model, artificial neural networks and support vector regression. Applied Computer Science, 19(3). https://doi.org/10.35784/acs-2023-21
Dudek, G., Fiszeder, P., Kobus, P., & Orzeszko, W. (2024). Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study. Applied Soft Computing, 151. https://doi.org/10.1016/j.asoc.2023.111132
Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar - A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008
Fałdziński, M., Fiszeder, P., & Orzeszko, W. (2021). Forecasting volatility of energy commodities: Comparison of garch models with support vector regression. Energies, 14(1). https://doi.org/10.3390/en14010006
Karasan, A., & Gaygısız, E. (2020). Volatility Prediction and Risk Management: An SVR-GARCH Approach. Journal of Financial Data Science, 2(4), 85–104. https://doi.org/10.3905/jfds.2020.1.046
Kuizinienė, D., Varoneckienė, A., & Krilavičius, T. (2019). Cryptocurrencies short-term forecast: Application of ARIMA, GARCH and SVR models. CEUR Workshop Proceedings, 2470, 70–73.
Li, N., Liang, X., Li, X., Wang, C., & Wu, D. D. (2009). Network environment and financial risk using machine learning and sentiment analysis. Human and Ecological Risk Assessment, 15(2), 227–252. https://doi.org/10.1080/10807030902761056
Lux, M., Härdle, W. K., & Lessmann, S. (2020). Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid. Computational Statistics, 35(3), 947–981. https://doi.org/10.1007/s00180-019-00934-7
Santamaría-Bonfil, G., Frausto-Solís, J., & Vázquez-Rodarte, I. (2015). Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm. Computational Economics, 45(1), 111–133. https://doi.org/10.1007/s10614-013-9411-x
Sediono, Andreas, C., Mardianto, M. F. F., Ana, E., & Suliyanto. (2023). Forecasting the Volume of Electronic Money Transactions Using ARIMAX-GARCH Model and Support Vector Regression. AIP Conference Proceedings, 2975(1). https://doi.org/10.1063/5.0187234
Sun, H., & Yu, B. (2020). Forecasting Financial Returns Volatility: A GARCH-SVR Model. Computational Economics, 55(2), 451–471. https://doi.org/10.1007/s10614-019-09896-w
Tung, H. K. K., & Wong, M. C. S. (2009). Financial risk forecasting with nonlinear dynamics and support vector regression. Journal of the Operational Research Society, 60(5), 685–695. https://doi.org/10.1057/palgrave.jors.2602594
Vijaya, C. K. R. M., & Rajan, P. (2022). A Hybrid Machine Learning Approach for Price Forecasting in Electricity Market with Smart Bidding Strategies and Wind Energy Influence. International Review on Modelling and Simulations, 15(6), 414–424. https://doi.org/10.15866/iremos.v15i6.22653
Xu, J., Liu, J., & Zhao, H. (2011). Financial forecasting: Comparative performance of volatility models in chinese stock markets. Proceedings - 4th International Joint Conference on Computational Sciences and Optimization, CSO 2011, 1220–1225. https://doi.org/10.1109/CSO.2011.136
Yan, G. L., & Gang, L. Y. (2012). Prediction on fund volatility based on SVRGM-GARCH model. In Advanced Materials Research (Vols. 403–408). https://doi.org/10.4028/www.scientific.net/AMR.403-408.3763
Yang, J.-H., & Li, L. (2011). Option price forecasting model based on SVR. Xitong Gongcheng Lilun Yu Shijian/System Engineering Theory and Practice, 31(5), 848–854.
Yi, X., Wen, X., & Yin, X. (2023). Time series prediction and application based on multi-kernel support vector regression. Proceedings of SPIE - The International Society for Optical Engineering, 12721. https://doi.org/10.1117/12.2683400
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.